
Controlling Maillard Reactions in the Heating Process of Blockmilk
Using an Electronic Nose

Charon Zondervan,* Sorel Muresan, Harald G. de Jonge, E. Ulphard Thoden van Velzen,
Clare Wilkinson, Herry H. Nijhuis, and Tina Leguijt

Agrotechnological Research Institute ATO-DLO, Food and Food Processing Division, Bornsesteeg 59,
P.O. Box 17, NL-6700 AA Wageningen, The Netherlands

An electronic nose has been used to classify blockmilk products subjected to various heating processes
based on their volatile composition. Multivariate analyses of electronic nose and GC/MS data are
highly comparable with respect to relative changes in aroma profile going from raw to final product.
Predictive properties of various neural networks based on the raw sensor output were moderate to
good.
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INTRODUCTION

The control of aroma development in industrial food
processing is extremely important. However, processes
such as heating, drying, fermenting, blending, etc. are
usually controlled by measuring descriptive aroma
derivatives. These are usually single parameter mea-
surements such as color, pH, or concentrations of certain
chemicals or biomolecules that can be measured chro-
matographically or spectrophotometrically. When it
comes to the assessment of flavor quality going from
raw material to final product, sensory panels and GC-
MS are currently used. With the maturation of gas
sensor technology, a new alternative method becomes
available to assess flavor quality. This enables process
control based on the full spectrum of an aroma. Since a
series of gas sensors effectively mimics mammalian
olfactory sensing, the term ‘electronic nose’ is used for
such devices (Pearce, 1997). Although many potential
applications especially in food processing (Pearce et al.,
1993; Tomlinson et al., 1995; Börjesson et al., 1996;
Eklöv et al., 1998; Maul et al., 1998; Arnold and Senter,
1998) and other life sciences (Jonsson et al., 1997;
Gibson et al., 1997; Ping et al., 1997) have been
reported, the only current commercial application of
electronic aroma sensing, to our knowledge, is in the
detection of off-flavors in cooked pork meat, the so-called
boar taint (AnnorFrempong et al., 1997a,b).

Blockmilk is an important half product in the food
industry. It is obtained by heating and drying/concen-
trating mixtures of milk and sugar to ca. 98% dry matter
and is mainly used in the production of chocolate. Many
important flavor components are formed during the
heating steps via Maillard reactions (Hodge, 1967;
Scarpelino and Soukop, 1993). Effective process control
systems must therefore eliminate under- and overpro-
cessing, since this results in undesirably flavored block-
milk. This paper describes the use of an electronic nose
to distinguish between intermediate products from a
crucial heating step in the blockmilk process. These
results are set against the results of other analytical

data such as GC-MS and sensory analysis. The full
GC-MS data of blockmilk flavor will be published
elsewhere (Muresan, 1999).

Current commercial electronic noses consist of an
array of sensors, the sensing mechanism based on
various sensor techniques. In the present case, the
sensors are coated with thin layers of conducting
polymers. Upon exposure of the sensor head to organic
vapors, the electrical resistance of the polymers changes.
Since all sensors have been prepared under slightly
varying conditions, they all give different time-depend-
ent response patterns toward volatile compounds. There-
fore, each aroma or mixture of volatiles in general gives
a unique sensor response pattern or “fingerprint”.
Various techniques can be used to extract useful infor-
mation from the response patterns, among which sta-
tistical multivariate methods and artificial neural net-
works are the most important. Since these procedures
can be automated easily, the electronic nose offers an
aroma analysis with high reproducibility, speed, and
objectiveness.

MATERIALS AND METHODS

Blockmilk Samples. Eight blockmilk samples at various
stages of processing were obtained from Coberco Isoco, Zwolle,
The Netherlands, and stored at -50 °C. Part of the production
process is drawn schematically in Figure 1. K represents the
starting material (pasteurized milk and sugar); L and M
samples are taken after two consecutive concentrating steps;
N-Q samples are the intermediate products of an increasingly
severe heating step; and X is the final product, which is
obtained by drying of Q.

Electronic Nose. A commercially available electronic nose
with 12 conducting polymer-coated sensors (Neotronics eNOSE
4048, U.K.) was used, without controlling the relative humidity
(Visser and Taylor, 1998). It was equipped with an autosam-
pler (Tekmar Precept II, The Netherlands), customized for
dynamic headspace transfer to the electronic nose. To avoid
cross-contamination due to the high persistence of blockmilk
aroma, the entire tubing system was flushed with dry nitrogen
for 10 min between dynamic sampling. Blockmilk samples for
the electronic nose were prepared by thoroughly mixing 60.0
g of blockmilk with an equal amount of MilliQ water (R > 18
MΩ) immediately before performing the experiment. The
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aroma profiles of various intermediate blockmilk products were
analyzed by following the sensor response of all 12 conducting
polymeric sensors for 4 min. The maximum sensor response
was usually obtained in 2 min for most sensors. The response
values after 3 min were used in statistical processing.

GC-MS Analyses. Dynamic headspace isolation of volatile
compounds was performed in triplet according to Luning
(1994) using Tenax TA as the adsorbent. To 10 g of the sample,
10 g of MilliQ water (R > 18 MΩ) was added and stirred during
2 h at 35 °C, while the sample was flushed with 30 mL/min
purified nitrogen. For each triplet experiment, a system control
sample was made by stirring 10 g of MilliQ water under the
same headspace conditions. Volatiles were desorbed from
Tenax tubes (Tekmar 6016 desorber/autosampler, Interscience,
The Netherlands) and via internal trapping at -100 °C
injected in a capillary column (CP-52-CB, 50 m, 0.32 mm i.d.,
df ) 1.2 µm). The gas chromatograph (Fisons 8533, Inter-
science) was equipped with an FID. The GC-MS (Carlo Erba,
Mega 3600, QMD 1000, Interscience) was equipped with a
thermal desorption unit (Tekmar 5010, Interscience). For both
devices, thermal desorption conditions (5 min at 250 °C) and
GC column conditions (10 min isotherm at 40 °C, followed by
3 °C/min to 190 °C, 10 °C/min to 250 °C, and finally 5 min
isotherm at 250 °C) were identical. Electron impact mass
spectral analysis was carried out at 70 eV.

Sensory Analysis. The sensory analysis was carried out
using a trained panel of 23 members using Quantitative
Descriptive Analysis. The samples were scored for nine flavor
attributes and five taste attributes.

Data Analysis. The sensor response curves were recorded
and processed using Neotronics software. The neural network
analyses were performed using a two-layer back-propagation
network with the sensor responses at saturation as input
(Bishop, 1995) using Neotronics software. Subsequent princi-
pal component analyses (PCA) and multivariate techniques
such as multiple discriminant analysis (MDA) were performed
using Unistat 4.0 (Unistat Ltd, U.K.) and The Unscrambler
6.1 (Camo AS, Norway). The GC analysis input data are
constituted by the differences (dissimilarities) of intensities
of volatile constituents (i.e., aroma profile) among samples. In
this respect a weighted Euclidean distance as a dissimilarity
index, S, calibrated in the [0,1] range, was used (Gordon, 1981).
For two chromatograms A and B, S(AB) ) 0 indicates a perfect
match, while S(AB) ) 1 indicates no similarity. The distance
matrix based on the dissimilarity coefficients was analyzed
by multidimensional scaling (MDS, SPSS), since this statistical
method was specifically conceived to handle dissimilarities
(Schiffman and Beekert, 1986). MDS analyzes the dissimilarity
data in a way that displays the structure of the distance-like
data as a geometrical picture.

RESULTS AND DISCUSSION

Electronic Nose. The blockmilk samples are derived
from various drying and concentrating steps. Conse-
quently, the dry matter content increases during pro-
cessing (Table 1). Since the concentration of the flavor
components in the headspace is related to the dry
matter content, the dependence of the sensor response
to dry matter content or rather the amount of water was
established.

When samples of K were diluted with a factor 1, 2.5,
and 5, keeping the headspace volume constant, the
sensor response curves were found to be identical for
all three samples. Thus, it is assumed that, even with
variations in dry matter content in the prepared samples
(10.3% for K to 48.9% for X after dilution), headspace
contents as measured by the electronic nose are in all
cases related to aroma compounds and not simply
related to the amount of water.

Multivariate Analyses. The classification of samples
K-X by the electronic nose has been evaluated by
correlating the MDA plots to quantitative aroma profiles
obtained from dynamic headspace GC.

The distances or proximities matrix between the
analyzed samples is presented in Table 2. The bold
values correspond to the process presented in Figure 1.
An inspection of the S indices reveal a close similarity
between K, L, and M samples [S(KL) ) 0.38, S(LM) )
0.32]. The N-Q samples collected after the heating step
are different as compared to the initial samples (K-M)
and are also different from one another. During this
step, considerable changes in the aroma profile occurred
as visually evidenced by dramatic color and viscosity
changes as well. The final product X obtained from the
sample Q seems to be different from the other samples
(S > 0.7).

When the table of dissimilarity values was subjected
to MDS (Figure 2), a plot similar to the MDA plot
(Figure 3) of all electronic nose data is obtained. The
graphical similarity between the MDA plot of electronic
nose data (Figure 3) and the multidimensional scaling
plot of the distance matrix between the samples based
on quantitative GC data (Figure 2) indicates that the

Figure 1. Schematic representation of the blockmilk manu-
facturing process and the corresponding sampling (dashed
arrows).

Table 1. Process Parameters of Blockmilk Samples

sample treatment dm (wt %)a

K pasteurized milk + added sugar 20.5
L high temp pasteurization + first-stage

evaporation
57.9

M second-stage evaporation 62.8
N mild caramelization 63.8
O medium caramelization 64.3
P intense caramelization 62.4
Q severe caramelization 61.9
X drying the severely caramelized product 97.8

a Percentage dry matter content.

Table 2. Distance Matrix between Analyzed Samples
Using a Weighted Euclidean Dissimilarity Index Based
on GC-MS Data

sample K L M N O P Q X

K 0.00 0.38 0.38 0.48 0.65 0.70 0.81 0.78
L 0.00 0.32 0.46 0.62 0.68 0.84 0.72
M 0.00 0.42 0.63 0.69 0.82 0.73
N 0.00 0.48 0.58 0.77 0.72
O 0.00 0.32 0.69 0.65
P 0.00 0.63 0.61
Q 0.00 0.72
X 0.00
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electronic nose is largely able to determine differences
in aroma profiles in a qualitative manner.

This is further evidenced by sensorial data. No major
changes in aroma profile were observed for the initial
processing steps. Perceived milk flavor decreased while
the scores for the other descriptors remained more or

less constant. Many volatiles are generated during the
heating step due to the Maillard reactions. This is
consistent with the increase seen in perceived caramel,
nutty, and burnt flavor. During the final step (the
drying), volatiles decreased in their intensity, but the
sensory aroma profile is not essentially changed (Figure
4). When the sensor response data for all blockmilk
samples and the sensorial scores are subjected to PCA
analysis, the model shows that the sensors in fact
respond to volatiles associated with the descriptors
caramel, nutty, burnt, and chocolate (Figure 5). These
volatiles are typically Maillard reaction products that
are formed during the caramelization step.

Neural Network Prediction. Multiple discriminant
analysis is a supervised statistical processing tool and
requires input of additional data, which allows the
statistical algorithm to classify samples in their correct
class. However, for predictive purposes, this is highly
unsuited. To allow recognition (i.e., correct classification)
of unknown samples relative to previously measured
reference data, artificial neural networks (ANNs) can
be created. In a self-learning routine, a computer
program becomes able to recognize unclassified samples
as belonging to a certain class based on the raw data of
the sensor output in a supervised manner. Sixteen
independent response curves for each blockmilk product
K-Q were used to train two neural networks. The first
neural network (ANN-1) used 8 out of the 16 measure-
ments as training data, with the remaining 8 measure-
ments as test data for the first three blockmilk products
(K-M). The second (ANN-2) was trained using only
N-Q data since these are the actual products of the
heating process in which the electronic nose could be
applied, also with 8 out of the 16 measurements used
as training data.

Neural network ANN-1, trained using only K-M
samples, is perhaps not very interesting from a process-
ing point of view but nonetheless gives good predictive
scores and confidence levels (Table 3). This is especially
pleasing since the aroma profiles of K-M are very
similar according to GC-MS and sensory analysis (see
above) and are not separated very well using multivari-

Figure 2. First two dimensions of multidimensional scaling
of GC dissimilarity distances between samples from blockmilk
manufacturing process.

Figure 3. MDA plot of all blockmilk samples K-X.

Figure 4. Sensory analysis of blockmilk products.

Figure 5. PCA model of blockmilk samples based on sensorial scores and sensor responses.

Table 3. Predictive Scores and Confidence Levels of
ANN-1

sample predictive score (%)a confidence level (%)b

K 62.5 96.6
L 100 98.9
M 85.7 95.1

a Predictive score is defined as the percentage of correct clas-
sifications of the testing samples, with confidence >90%. b Con-
fidence level is defined as the average confidence of all correctly
classified samples.
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ate analyses. Hence, this neural network is well able to
discriminate between these half products with almost
identical aroma profiles.

Various neural networks were trained specifically for
the heating step and contained only N-Q data. The
results vary slightly depending on which 8 of the 16
measurements are used for training purposes. This
heterogenity presumably arises from small differences
in sample preparation, headspace development, and
sensor drift. The results from a typical neural network
(ANN-2) are collected in Table 4. Neural network
ANN-2 gave overall a poorer result as compared to
ANN-1 both for predictive scores and confidence levels,
even though the cluster separation of the N-Q data in
MDA is similar to that of the K-M data (Figure 3).
Especially the predictive scores for sample O, of which
some of the test data could not be classified using ANN-
2, is rather low with 42.9%.

CONCLUSIONS

A commercially available electronic nose works quite
well in determining the relative differences between
blockmilk samples from various process steps. This
procedure is much faster and cheaper than tedious GC-
MS determinations, and although less quantitative, the
electronic nose results correlate well with both GC-MS
data and sensorial scores. Therefore, using an electronic
nose for aroma analysis in food or the food processing
industry is very promising. Prediction or classification
of “unknown” samples using artificial neural networks
was found to give encouraging results.
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Table 4. Predictive Scores and Confidence Levels of
ANN-2

sample predictive score (%)a confidence level (%)

N 75.0 99.8
O 42.9 93.4
P 100 99.6
Q 85.7 87.0

a See Table 3 for definition of terms.
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